Investigation of the effects of Sugammadex and Rocuronium on rat lung tissue
Effect of Sugammadex and Rocuronium on lung tissue
DOI:
https://doi.org/10.5281/zenodo.11652915Anahtar Kelimeler:
Sugammadex; rocuronium; lung morphology; oxidative stres; ratÖz
In this study, sugammadex of used to reverse rocuronium used for surgical operations aimed to be examined effects on the lungs that expel anesthetic agents from the body. The possible mechanism of oxidative damage and the effects of sugammadex on lung morphology are still not understood. Four groups were formed from 32 adult Sprague-Dawley male rats as pure control, control group, sugammadex, and sugammadex-rocuronium. After drug administration, lung tissues were assessed histopathologically and biochemically for oxidative damage. A statistically significant difference was observed between the groups regarding glutathione (GSH) levels in the rat lung. It was observed that rocuronium increased the malondialdehyde (MDA) value, which is considered an indicator of free radical damage in tissues. The sugammadex-rocuronium complex can cause oxidative stress in lung tissue. In group sugammadex, dense fibrosis and lymphoid tissue were found in the connective tissue, while group sugammadex-rocuronium had little fibrosis and lymphoid tissue. In group sugammadex-rocuronium, thickening of the alveolar wall was detected. The effect of sugammadex application on lung tissues has been demonstrated by biochemical and histopathologic data. Rocuronium caused an increase in mast cells in lung tissue. Sugammadex suppressed this increase caused by rocuronium and caused a decrease in mast cells in the lung tissue. Although these data were obtained as a result of experimental studies, we think that they will make a significant contribution to the anesthesia and reanimation patient treatment protocols in the clinic. However, new studies are necessary to determine the toxic effects of sugammadex and sugammadex-rocuronium complex.
İndirmeler
Referanslar
Lee S, Jang EA, Chung S, Kang DH, Park SM, Hong M, Kim J, Jeong S. Comparisons of surgical conditions of deep and moderate neuromuscular blockade through multiple assessments and the quality of postoperative recovery in upper abdominal laparoscopic surgery. J Clin Anesth. 2021;73:110338. doi: 10.1016/j.jclinane.2021.110338
Renew, J. R., et al. Clinical use of neuromuscular blocking agents in anesthesia. UpToDate. 2019.
Booij LH. Cyclodextrins and the emergence of sugammadex. Anaesthesia. 2009;64:Suppl:1:31-7. doi: 10.1111/j.1365-2044.2008.05868.x
Booij LH, van Egmond J, Driessen JJ, de Boer HD. In vivo animal studies with sugammadex. Anaesthesia. 2009;64:Suppl 1:38-44. doi: 10.1111/j.1365-2044.2008.05869.x
Yang LP, Keam SJ. Sugammadex: a review of its use in anaesthetic practice. Drugs. 2009;69(7):919-42. doi: 10.2165/00003495-200969070-00008
Peeters PA, van den Heuvel MW, van Heumen E, Passier PC, Smeets JM, van Iersel T, Zwiers A. Safety, tolerability and pharmacokinetics of sugammadex using single high doses (up to 96 mg/kg) in healthy adult subjects: a randomized, double-blind, crossover, placebo-controlled, single-centre study. Clin Drug Investig. 2010;30(12):867-74. doi: 10.1007/BF03256915
Andersson CK, Mori M, Bjermer L, Löfdahl CG, Erjefält JS. Novel site-specific mast cell subpopulations in the human lung. Thorax. 2009;64(4):297-305. doi: 10.1136/thx.2008.101683
Sorgenfrei IF, Norrild K, Larsen PB, Stensballe J, Ostergaard D, Prins ME, Viby-Mogensen J. Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex: a dose-finding and safety study. Anesthesiology. 2006;104(4):667-74. doi: 10.1097/00000542-200604000-00009
Yağan Ö, Taş N, Mutlu T, Hancı V. Comparison of the effects of sugammadex and neostigmine on postoperative nausea and vomiting. Braz J Anesthesiol. 2017;67(2):147-152. doi: 10.1016/j.bjane.2015.08.003
Behrooz A. Pharmacogenetics and anaesthetic drugs: Implications for perioperative practice. Ann Med Surg (Lond). 2015;10;4(4):470-4. doi: 10.1016/j.amsu.2015.11.001
Nair AS. Pharmacogenomics of inhalational anesthetic agents. Med Gas Res. 2019;9(1):52-53. doi: 10.4103/2045-9912.254641
Lee W. The potential risks of sugammadex. Anesthesia and Pain Medicine. 2019;14(2): 117-122. doi: 10.17085/apm.2019.14.2.117
Muedra V, Rodilla V, Llansola M, Agustí A, Pla C, Canto A, Hernández-Rabaza V. Potential Neuroprotective Role of Sugammadex: A Clinical Study on Cognitive Function Assessment in an Enhanced Recovery After Cardiac Surgery Approach and an Experimental Study. Front Cell Neurosci. 2022;16:789796. doi: 10.3389/fncel.2022.789796
Bostan H, Kalkan Y, Tomak Y, Tumkaya L, Altuner D, Yılmaz A, Erdivanli B, Bedir R. Reversal of rocuronium-induced neuromuscular block with sugammadex and resulting histopathological effects in rat kidneys. Ren Fail. 2011;33(10):1019-24. doi: 10.3109/0886022X.2011.618972
Pühringer FK, Rex C, Sielenkämper AW, Claudius C, Larsen PB, Prins ME, Eikermann M, Khuenl-Brady KS. Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points: an international, multicenter, randomized, dose-finding, safety assessor-blinded, phase II trial. Anesthesiology. 2008;109(2):188-97. doi: 10.1097/ALN.0b013e31817f5bc7
Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978;86(1):271-8. doi: 10.1016/0003-2697(78)90342-1
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70-7. doi: 10.1016/0003-9861(59)90090-6
Fuchs-Buder T, Romero CS, Lewald H, Lamperti M, Afshari A, et al. Peri-operative management of neuromuscular blockade: A guideline from the European Society of Anaesthesiology and Intensive Care. Eur J Anaesthesiol. 2023;40(2):82-94. doi: 10.1097/EJA.0000000000001769
Herring WJ, Woo T, Assaid CA, Lupinacci RJ, Lemmens HJ, Blobner M, Khuenl-Brady KS. Sugammadex efficacy for reversal of rocuronium- and vecuronium-induced neuromuscular blockade: A pooled analysis of 26 studies. J Clin Anesth. 2017;41:84-91. doi: 10.1016/j.jclinane.2017.06.006
Carron M, Tessari I, Linassi F. Sugammadex compared with neostigmine in reducing postoperative pulmonary complications in older patients: a meta-analysis. Br J Anaesth. 2022;128(4):e259-e262. doi: 10.1016/j.bja.2021.12.038
Tobias JD. Current evidence for the use of sugammadex in children. Paediatr Anaesth. 2017;27(2):118-125. doi: 10.1111/pan.13050
Hiramatsu S, Moriwaki K, Nakao M, Tsutsumi YM. Rocuronium-induced respiratory paralysis refractory to sugammadex in Charcot-Marie-Tooth disease. Can J Anaesth. 2022;69(3):364-368. doi: 10.1007/s12630-021-02168-y
Alagöz A, Küçükgüçlü S, Boztaş N, Hancı V, Yuluğ E, Şişman AR. Effects of sugammadex on ischemia reperfusion in a rat extremity model. Ulus Travma Acil Cerrahi Derg. 2020;26(4):509-516. doi: 10.14744/tjtes.2019.12524
Erçin BS, Kılıç KD, Tiftikçioğlu YÖ, Biçer A, Uyanıkgil Y, Thione A, Gürler T. Solid organ nakli ve vaskülarize kompozit allotransplantasyon: Dünü ve bugünü. İstanbul Bilim Üniversitesi Florence Nightingale Transplantasyon Dergisi. 2017;2(1):7-13. doi:10.5606/fng.transplantasyon.2017.002
Levitzky MG. Effects of Anesthesia on Pulmonary Function. In: Levitzky M, McDonough K, Kaye A, Hall S. eds. Clinical Physiology in Anesthetic Practice. McGraw Hill; 2021. https://accessanesthesiology.mhmedical.com/content.aspx?bookid=2979§ionid=249590743
Bermede, O. Tek Akciğer Ventilasyonu Uygulanan Hastalarda Sevofluran ve Propofolün Pulmoner Oksidatif Stres Üzerine Etkisi. Journal of Ankara University Faculty of Medicine. 2020;73(2).
Sies H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants (Basel). 2020;9(9):852. doi: 10.3390/antiox9090852
Zhang C, Wang N, Xu Y, Tan HY, Li S, Feng Y. Molecular Mechanisms Involved in Oxidative Stress-Associated Liver Injury Induced by Chinese Herbal Medicine: An Experimental Evidence-Based Literature Review and Network Pharmacology Study. Int J Mol Sci. 2018;19(9):2745. doi: 10.3390/ijms19092745
Kehrer JP, Biswal SS. The molecular effects of acrolein. Toxicol Sci. 2000;57(1):6-15. doi: 10.1093/toxsci/57.1.6
Jiménez-Fernández S, Gurpegui M, Garrote-Rojas D, Gutiérrez-Rojas L, Carretero MD, Correll CU. Oxidative stress parameters and antioxidants in patients with bipolar disorder: Results from a meta-analysis comparing patients, including stratification by polarity and euthymic status, with healthy controls. Bipolar Disord. 2021;23(2):117-129. doi: 10.1111/bdi.12980
Koç A, Kuyrukluyildiz U, Gazi M, Caner Sayar A, Altuner D, et al. The effects of sugammadex on gastric ischemia-reperfusion injury in rats: Biochemical and histopathological evaluation. Gen Physiol Biophys. 2023;42(1):67-75. doi: 10.4149/gpb_2022049
Atiakshin D, Buchwalow I, Samoilova V, Tiemann M. Tryptase as a polyfunctional component of mast cells. Histochem Cell Biol. 2018;149(5):461-477. doi: 10.1007/s00418-018-1659-8
Atiakshin D, Buchwalow I, Tiemann M. Mast cell chymase: morphofunctional characteristics. Histochem Cell Biol. 2019;152(4):253-269. doi: 10.1007/s00418-019-01803-6
Theoharides TC. Potential association of mast cells with coronavirus disease 2019. Ann Allergy Asthma Immunol. 2021;126(3):217-218. doi: 10.1016/j.anai.2020.11.003
Andersson CK, Mori M, Bjermer L, Löfdahl CG, Erjefält JS. Novel site-specific mast cell subpopulations in the human lung. Thorax. 2009;64(4):297-305. doi: 10.1136/thx.2008.101683
Erjefält JS. Mast cells in human airways: the culprit? Eur Respir Rev. 2014;23(133):299-307. doi: 10.1183/09059180.00005014
Asakura C, Iwasaki H. The use of succinylcholine after sugammadex reversal. J Anesth. 2016;30(5):915. doi: 10.1007/s00540-016-2203-4
Yeşiltaş S, Orhon ZN, Cakır H, Dogru M, Çelik MG. Does Sugammadex Suppress Allergic Inflammation Due to Rocuronium in Animal Model of Rat? Allergol Immunopathol (Madr). 2021;49(3):91-99. doi: 10.15586/aei.v49i3.84